初二下册数学课件 关于最新初二数学课件( 二 )


(2)提示学生“温故而知新”,养成良好的学习习惯 。
(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题” 。教学方法及注意事项:
(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡 。
(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可 。
(三)讲授新课(25~30分钟)
1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线 。
(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题 。(3~5分钟)教学方法及注意事项:
①主要采用讲授法,将实际问题用图形表示出来 。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边 。)一边用语言描述,一边在黑上画图 。
②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化 。
③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题 。
④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备 。
教学方法及注意事项:
①启发式教学,如何实现按路径长度递增产生最短路径?
②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤 。同样,也是只示范一部分,余下部分由学生独立思考完成 。
(四)课堂小结(3~5分钟)
1、明确本节课重点
2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?
(五)布置作业
1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排 。
六、教学特色
以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来 。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣 。
关于最新初二数学课件篇3
一、学习目标
1、多项式除以单项式的运算法则及其应用 。
2、多项式除以单项式的运算算理 。
二、重点难点
重点:多项式除以单项式的运算法则及其应用 。
难点:探索多项式与单项式相除的运算法则的过程 。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1、计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy 。
2、提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1、多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______
2、本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2) 。
随堂练习:教科书练习 。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则 。
关于最新初二数学课件篇4
第三十四学时:14、2、1平方差公式
一、学习目标:
1、经历探索平方差公式的过程 。
2、会推导平方差公式,并能运用公式进行简单的运算 。
二、重点难点
重点:平方差公式的推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式 。
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999(2)998×1002
导入新课:计算下列多项式的积、
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y) 。

推荐阅读